

December 27, 2001

TABLE 4.2-1

Geologic Deposits Present in the Vicinity of the BP Cherry Point Cogeneration Project

Geologic Stratigraphy	Hydrostratigraphic Units
Qbg - SAND AND GRAVEL OVERLYING BELLINGHAM DRIFT (Everson Interstade) - Pleistocene -	Upper Water-Bearing Zone comprised of the Qbg sand and gravel
Stratified sand and gravel. Mantles Bellingham Drift in western part of lowland. Probably formed by waves	where present and the weathered upper portion of the Qb Bellingham
reworking Bellingham Drift and removing most of fine sediments. Lose, unfossiliferous, and moderately well	Drift.
sorted. Thickness as much as 10 feet.	
Qb – BELLINGHAM DRIFT (Everson Interstade) – Pleistocene – Blue-gray, unsorted, unstratified pebbly,	
sandy silt and pebbly clay. Derived from rock debris melted out of floating ice and deposited on sea floor.	
Locally contains marine mollusks and wood, radiocarbon dated between 11,000 and 12,000 years before	
present. Glaciomarine drift mantles upland areas between flood plains below elevations of 600 feet. Named	Qb – Bellingham Drift Aquatard. Lower unweathered potion of the
by Easterbrook (1963, p.1475-1478) for exposures 8 miles northeast of Bellingham. Type locality in sec. 34, T. 39	deposit.
N., R. 4E., where unit caps section and is underlain by Deming Sand. Thickness up to 70 feet.	deposit.
Qd* - DEMING SAND (Everson Interstade) – Pleistocene – Brown, stratified, well-sorted, medium to coarse	Qd – Deming Sand Aquifer
sand with some layers of clay, silt, and gravel. Deposited as stream sediments when sea level stood 40 to 70	
feet above present sea level. Shells in sand near Bellingham deposited in beach environment. Named by	
Easterbrook (1963, p.1475) for exposures along Nooksack River in sec. 34, T. 39 N., R. 4 E., 1 ¼ miles southeast	
of Cedarville, where unit overlies Kulshan Drift and underlies Bellingham Drift, Wood in basal peat at type	
locality dated at 11,6000 years B.P. Thickness about 30 feet.	
Qk* - KULSHAN DRIFT (Everson Interstade) - Pleistocene - Blue-gray, unsorted and unstratified mixture of	Qk – Kulshan Drift Aquatard
silt, clay, sand, and pebbles. Till like deposit not highly compacted, composed of debris melted out of floating	
glacier ice and deposited on the sea floor when seal level was at least 300 feet higher than present. Marine	
shells dated by radiocarbon between 11,600 and 12,900 years B.P. Named by Easterbrook (1963, p.1472-1475)	
for exposures along Nooksack River, 1-¼ miles southeast of Cedarville (sec. 34, T. 39 N., R. 4 E.) where unit is	
overlain by Deming Sand. Thickness generally 15 to 25 feet	
Qvt* - VASHON TILL (Vashon Stade) - Pleistocene - Poorly sorted mixture of pebbles and cobbles in matrix	Qvt – Vashon till aquatard. May contain local sand and gravel lens that
of silt, clay, and sand derived almost entirely from British Columbia. Compact till with concrete like texture.	produce water.
Deposited by ice, up to 6,000 feet thick, from main advance of last major continental glaciation. Forms massive	
layer 10 to 30 feet thick beneath most of lowland. Contains a few lenses of sand and gravel. Limiting	
radiocarbon dates from other areas indicate an age between about 18,000 and 13,000 years.	
Qve* - ESPERANCE SAND MEMBER OF VASHON DRIFT (Vashon Stade) - Pleistocene - Crossbedded	Qve – Esperance Sand Aquifer
outwash sand and gravel deposited from melt-water streams from advancing Vashon glacier. Formed on	
outwash plain graded to a former sea level below the present. Beds as much as a 45 feet thick, pinch out	
laterally. No radiocarbon samples to date directly, but unit probably between 22,000 and 18,000 years old.	One Contains haden without the
Qu – Undifferentiated quaternary deposits of clays, silts, sands and gravel	Qu – Contains both aquifers and aquatards
TMs – Undifferentiated tertiary-mesosoic sandstones, siltstones, shales and coal beds	TMs – Bedrock typically a poor water producer. Fracture systems can
	yield sufficient supplies of water

Source: Modified from Easterbrook 1976, and Remediation Technologies Inc. 1993

Last printed 6/7/2002 2:56 PM

TABLE 5.1-1 Water Rights, Permits, Certifications, and Claims in the Nooksack Basin (Upstream of Ferndale)

DOCUMENT NUMBER	DOCUMENT TYPE	PURPOSE CODE	PRIORITY DATE	Location	Qi (gpm)	Qa (acre-feet)	STARTING	PURPOSE ENDING DATE	LAST NAME	FIRST NAME	BUSINESS NAME	SOURCE NAME
G1-*01249CWRIS	CERTIFICATE	IR	October 7, 1949	T39N/R02E-22	350	54					GREENACRES MEML PK	INFILTRATION TRENCH
G1 01240CWIGS	CERTIFICATE	IIV.	October 7, 1340	130147 10021 22	330	34					FERNDALE TOWN	
G1-*02509CWRIS	CERTIFICATE	MU	May 9, 1952	T39N/R02E-19	1000	1615					OF	WELL
G1-*03899CWRIS	CERTIFICATE	MU	February 28, 1955	T39N/R02E-19	870	440					FERNDALE TOWN OF	WELL
G1-*05728CWRIS	CERTIFICATE	DS, FS, IR	September 7, 1960	T40N/R02E-07	810	193.6					LE COCQ R B	WELL
G1-*06660CWRIS	CERTIFICATE	IR	March 28, 1963	T40N/R02E-22	380	120					SHADY NOOK FARMS	WELL
G1-*10062CWRIS	CERTIFICATE	IR	March 7, 1969	T40N/R02E-10	500	84	01-May-96	01-Oct-96			SCHOESSLER G JR	INFILTRATION TRENCH
G1-00300CWRIS	CERTIFICATE	IR	July 10, 1970	T39N/R02E-02	400	108	01-Jun-96	30-Sep-96			VAUGHN LEONA	INFILTRATION TRENCH
G1-00010CWRIS	CERTIFICATE	IR	November 16, 1970	T40N/R02E-11	1209	67	01-May-96	30-Sep-96			STEENSMA FRED	WELL
G1-00444CWRIS	CERTIFICATE	IR	December 28, 1970	T40N/R01E-14	500	92					OLASON HAROLD	INFILTRATION TRENCH
G1-00345CWRIS	CERTIFICATE	IR, DS	February 15, 1972	T40N/R02E-15	450	66	5/15/1996 (IR)	9/15/1996 (IR)			YODER RICHARD L	WELL
G1-26325	CERTIFICATE	FR	September 11, 1991	T39N/R02E-06	1350				JANSEN	ALBERT	JIJ CONSTRUCTION CO., INC.	INFILTRATION TRENCH
S1-00708CWRIS	CERTIFICATE	CI, IR	September 27, 1968		12566	18544					Whatcom Cnty PUD 1	RIVER
S1-00707C	CERTIFICATE	CI	April 16, 1965		22440	27667					WHATCOM CNTY PUD 1	RIVER
S1-*11970C	CERTIFICATE	CI	January 13, 1953		2244	0					WHATCOM CNTY PUD 1	RIVER
S1-00707C	CERTIFICATE	DM, IR	April 16, 1965		22440	27667					WHATCOM CNTY PUD 1	NOOKSACK RIVER
G1-*05086CWRIS	CERTIFICATE	MU	December 22, 1958		500	800					BLAINE CITY OF	WELL
G1-*07623CWRIS	CERTIFICATE	MU	May 21, 1965		400	640					BLAINE CITY OF	WELL
G1-22483CWRIS	CERTIFICATE	MU	April 14, 1975		450	726					BLAINE CITY OF	WELL
G1-300037CL	CLAIM/	MU			800	1290					CITY OF BLAINE	WELL
G1-26822	PERMIT	MU	November 13, 1992		200	320					CITY OF BLAINE	WELL

*Purpose Codes:

IR (irrigation)

ST (stock watering)

DG (domestic general)

CI (commercial & industrial manufacturing

DS (domestic single)

IR (irrigation)

DM (domestic multiple)

MU (domestic municipal)

FS (fish propogation)

FR (fire protection)
Source: Washington State Department of Ecology, WRATS Database, August 2001.

Last printed 6/7/2002 2:56 PM Appendix F, Tables.doc

 $\underline{\text{TABLE 5.1-2}}$ Pending Groundwater Right Applications in the Terrell Creek/Cherry Point Watershed

DOCUMENT NUMBER	DOCUMENT TYPE	PURPOSE CODE	PRIORITY DATE	LOCATION	Qi (gpm)	BUSINESS NAME	SOURCE NAME
G1-27758	APPLICATION	CI MII	August 92 1006	T39N/R01E-09	700	PUD #1 OF WHATCOM	WELL
G1-27738	APPLICATION	CI, MU	August 23, 1996	139IN/ KUIE-U9	700	COUNTY	WELL
G1-27746	APPLICATION	CI, MU	June 21, 1996	T39N/R01W-13	1500	TRILLIUM CORPORATION	WELL
							SOUTH FORK
							NOOKSACK
S1-*06273AWRIS	APPLICATION	CI, DM	December 23, 1944		8976	WHATCOM CNTY PUD 1	RIVER
G1-26820	APPLICATION	MU	November 13, 1992		200	CITY OF BLAINE	WELL
G1-26821	APPLICATION	MU	November 13, 1992		450	CITY OF BLAINE	WELL
						BIRCH BAY WATER &	
G1-28046	APPLICATION	DM	August 3, 1999		500	SEWER DISTRICT	WELL

*Purpose Codes:

DG (domestic general

FP (frost protection)

 \mbox{CI} (commercial & industrial manufacturing

IR (irrigation)

MU (domestic municipal)

ST (stock watering)

DM (domestic multiple)

Source: Washington State Department of Ecology, WRATS Database, August 2001.

 $\frac{\text{TABLE 5.2-1}}{\text{Source Water Quality}}$

Constituent	Result	Units
Dissolved Oxygen	8.2	mg/l
Hydrogen Ion	7.2	pH units
Temperature	21.4	С
Chemical Oxygen Demand	ND	mg/l
Total Organic Carbon	0.55	mg/l
Total Nitrate/Nitrite	0.15	mg/l
Fluoride	ND	mg/l
Bromide	ND	mg/l
Vanadium	0.009	mg/l
Aluminum	0.523	mg/l
Antimony	ND	mg/l
Arsenic	ND	mg/l
Barium	0.010	mg/l
Beryllium	ND	mg/l
Cadmium	ND	mg/l
Chromium	ND	mg/l
Cobalt	ND	mg/l
Copper	ND	mg/l
Iron	0.368	mg/l
Lead	ND	mg/l
Manganese	0.009	mg/l
Mercury	ND	mg/l
Nickel	0.001	mg/l
Selenium	ND	mg/l
Thallium	ND	mg/l
Tin	ND	mg/l
Zinc	0.005	mg/l

 $\underline{\text{TABLE 5.3-1}}$ Chemicals Typically Used During Construction

Chemical	Purpose	Estimated Quantity	Storage Location
STG and pre-boiler piping cleaners	STG and pre-boiler piping cleaning waste, chelant chemical cleaner	400,000 gallons	Brought to site by equipment vendor/contractor
Solvents, used equipment lube oils, paints, adhesives	Used in construction	200 gallons monthly	Not known at this time
Used and waste oils	For CTG and STG lube oil flushes	200 55-gallon drums over life of construction	Not known at this time
Spent lead batteries	Various	3 batteries annually	Not known at this time
Spent alkaline batteries	Various	80 batteries monthly	Not known at this time
Waste oil from oily waste holding tank	Collected on site	25 gallons monthly	Not known at this time
Oil rags, oil absorbent	Generated during normal construction activities, excluding lube oil flushes	55 gallons monthly	Not known at this time
Argon Gas	Welding & HRSG components	Not known at this time	Temporary warehouse
Acetylene	Cutting torches	Not known at this time	Temporary warehouse
Helium	Welding aluminum ducts	Not known at this time	Temporary warehouse
Nitrogen	Welding	Not known at this time	Temporary warehouse
Oxygen	Cutting torches	Not known at this time	Temporary warehouse

 ${\bf Table~5.3-2} \\ {\bf Summary~of~Anticipated~Construction~Waste~Streams~and~Management~Methods}$

Waste Stream	Waste Stream Classification	Estimated Amount	Estimated Frequency of Generation	No. Truck Trips & Frequency	Quantity Shipped
Scrap wood, steel, glass, plastic, paper, calcium silicate insulation, mineral wool insulation	Non-hazardous solids	50 cubic yards	Weekly	1 per week	50 cubic yards
Empty hazardous material containers	Hazardous solids	1.5 cubic yard	Weekly	1 per week	1.5 cubic yard
Used and waste lube oil during CT and ST lube oil flushes	Hazardous or non-hazardous liquids	55 gallon drums	200 drums over life of construction	1 per 60 days	25 - 55 gallon drums
Oil rags, oil absorbent generated during normal construction activities excluding lube oil flushes	Hazardous liquids	55 US gallons	Monthly	1 per month	55 US gallons
Solvents, used construction equipment lube oils, paint, adhesives	Hazardous liquids	200 US gallons	Monthly	1 per month	200 US gallons
Spent lead acid batteries	Hazardous solids	3 batteries	Yearly	1 per year	3 batteries
Spent alkaline batteries	Hazardous solids	80 batteries	Monthly	1 per month	80 batteries
ST and pre-boiler piping cleaning waste, chelant	Hazardous or non-hazardous liquids	400,000 US gallons	Once before initial startup	34	400,000 US gallons
Waste oil from oily waste holding tank	Hazardous or non-hazardous liquids	25 US gallons	Monthly	1 per month	25 US gallons
Sanitary waste from potable chemical toilets and construction office holding tanks	Non-hazardous liquids	500 US gallons	Daily	1 per week	500 US gallons
Storm water from construction area	Non-hazardous liquids	950,000 US gallons	For a once in 2 year, 24 hour storm event	n/a	n/a
Fluorescent, mercury vapor lamps	Hazardous solids	40	Yearly	1 per year	40
Hydrotest water	Hazardous or non-hazardous liquids	2 to 3 million gallons	Once before initial startup	34	2 to 3 million gallons

TABLE 5.3-3 Anticipated Commissioning and Hydrostatic Test Water Volumes

Commissioning and Hydrostatic Water Use	Total Gallons
Demineralizer system tests and tank fill, I	800,000
Demineralizer system tests and tank fill, II	800,000
HRSG 1 Hydrotest	150,000
HRSG 2 Hydrotest	150,000
HRSG 3 Hydrotest	150,000
Condensate and Boiler Feedwater Pipe Hydrotests and Flushes, I	200,000
Condensate and Boiler Feedwater Pipe Hydrotests and Flushes, II	200,000
Main Steam and Reheat Piping Hydrotest, I	100,000
Main Steam and Reheat Piping Hydrotest, II	100,000
Preboiler and HRSG 1 and 2 Chemical Cleaning, Including Flushes, I	600,000
Preboiler and HRSG 1 and 2 Chemical Cleaning, Including Flushes, II	600,000
Steam Blow HRSGs 1, 2 and 3	15,000,000
Condenser Hydrotest and Cleaning, I	200,000
Condenser Hydrotest and Cleaning, Ii	200,000

The total test water volume is 19,250,000 gallons. Source: Duke Fluor Daniel, 2001

 $\underline{\text{TABLE 5.3-4}}$ Chemicals Used During Operations and Maintenance

Chemical	Estimated Quantity	Storage	Purpose
Lubrication oil	22,900 gallons	In STG and GTG	STG/GTG equipment
		equipment	
Control oil	230 gallons	In STG equipment	STG equipment
Hydrogen	60,400 scf	GTG/STG gas bottles	Power generation
			Power generation, estimate based on purge
Carbon dioxide	41,000 scf	GTG/STG gas bottles	and fire protection
			requirements
			12,000
Transformer oil	47,100 gallons	Combustion turbine	gallons/combustion
Transformer on	47,100 ganons	transformers	turbine
		Steam turbine	15,000 gallons/steam
Transformer oil	17,200 gallons	transformers	turbine
			3,000 gallons/auxiliary
Transformer oil	114,000 gallons	Auxiliary transformers	transformer
A 1 1 A	0.40.000 11	Above grade horizontal	
Anhydrous Ammonia	940,000 annually	cylindrical tank	No _x reduction
SCR Catalyst	4,800 ft ³	In HRSG	No _x reduction
CO Catalyst	990 ft ³	In HRSG	CO reduction
Duantilana altraal	17 500 gollong	Above grade table	Closed loop cooling
Propylene glycol	17,500 gallons	Above grade tank	water system
BPC-68170			Closed look cooling
(nitrate/borate)	50 gallons	Drum	water system
corrosion inhibitor			water system
BPB-59396 (diethyl			
hydroxylamine)	500 gallons	Tank	Water treatment system
oxygen scavenger			
BPB-59465		_	
(morpholine)	500 gallons	Tank	Water treatment system
corrosion inhibitor			
Di- and trisodium	000	D (1)	***
phosphate pH/scale	200 pounds	Bags/tank	Water treatment system
control agent	050.02	XX 1 / 1	***
Cation resin	950 ft ³	Warehouse/tank	Water treatment system
Anion resin	900 ft ³	Warehouse/tank	Water treatment system
Caustic (50 wt%)	8000 gallons	Tank	Water treatment system
Sulfuric acid (93 wt%)	8000 gallons	Tank	Water treatment system
BPW-76321	250 11	Та1-	Waten the atrat
(polyquaternary	350 gallons	Tank	Water treatment system
amine) polymer	NT / A	Dimelia.	Dlant five!t
Natural Gas	N/A	Pipeline	Plant fuel system

Source: Duke/Fluor Daniel, 2001.

 $\underline{\text{TABLE 5.3-5}}$ Storage Tank and Sumps Description

			Working				
Tank			Capacity	Diameter	Height	Design	Secondary
No.	Service/Purpose	Tank Type	US Gal	ft	ft	Standard	Containment
43-1213-1	Anhydrous Ammonia Storage Tank	Horizontal,	11,650	9.0	25' long	ASME BPVC,	Concrete Wall
	Store liquefied ammonia for use in	cylindrical				Section VIII, Div I (365 psig)	
	SCR air pollution control system	pressure vessel					
43-1901-01	BFW & Condensate Storage Tank	Vertical, cylindrical	211,680	32.0	40.0	API 650	None
	Storage for BFW and condensate	atmospheric above-					
	returned from Refinery, prior to	ground tank (open-					
	polishing treatment in demineralizer	vented)					
	system						
43-1901-01	Demineralized Water Storage Tank	Vertical, cylindrical	2,349,900	107.0	40.0	API 650	None
	Provide supply of BFW makeup in	atmospheric above-					
	the event that water delivery or	ground tank (open-					
	treatment is temporarily interrupted	vented)					
43-1903-01	Neutralization Tank	Vertical, cylindrical	115,000	34.0	40.0	API 650	None
	Collect used demineralization	atmospheric above-					
	regeneration chemicals, filter	ground tank (open-					
	backwash, and other plant non-oily	vented)					
	wastewaters to adjust pH as necessary						
	to Refinery						

Last printed 6/7/2002 2:56 PM Appendix F, Tables.doc

 $\underline{\text{TABLE 5.3-5}}$ Storage Tank and Sumps Description

			Working				
Tank			Capacity	Diameter	Height	Design	Secondary
No.	Service/Purpose	Tank Type	US Gal	ft	ft	Standard	Containment
43-1906-01	Closed Cooling Water System Head	Vertical, cylindrical	450	3.5	6.0	API 650	None
	Tank	pressure vessel					
	Provide volume for coolant thermal						
	expansion, fill and drain point						
43-1910-01	Oxygen Scavenger Tank	Vertical, cylindrical	1,000	5'-2"	7'-4"	FRP	Curbed Area
	Storage for BFW treating chemical	atmospheric					
43-1911-01	Neutralizing Amine Tank	Vertical, cylindrical,	1,000	5'-2"	7'-4"	FRP	Curbed Area
	Storage for BFW treating chemical	atmospheric					
43-1912-01	Phosphate Tank	Vertical, cylindrical,	500	4'-0"	6'-3"	FRP	Curbed Area
	Storage for BFW treating chemical	atmospheric					
43-1914-01	Acid Storage Tank	Horizontal,	8,000	9'-0"	12'-6" S/S	ASME Section VIII Div I	Concrete Wall
	Storage for Demineralizer anion bed	cylindrical,				but not stamped	
	regeneration	atmospheric					
43-1915-01	Caustic Storage Tank	Horizontal,	8,000	9'0"	12'-6" S/S	ASME Section VIII Div I	Concrete Wall
	Storage for Demineralizer cation bed	cylindrical,				but not stamped	
	regeneration	atmospheric					
	Blowdown Sump	Below ground,	17,240	12'Lx12'W	16' deep		
	Gravity drain collection point for	concrete sump					
	HRSG boiler blowdown drain,						
	pumped from sump to Neutralization						
	Tank						

Last printed 6/7/2002 2:56 PM Appendix F, Tables.doc

 $\underline{\text{TABLE 5.3-5}}$ Storage Tank and Sumps Description

			Working				
Tank			Capacity	Diameter	Height	Design	Secondary
No.	Service/Purpose	Tank Type	US Gal	ft	ft	Standard	Containment
	Oily Water Sump (GTG & STG Area)	Below ground,	17,240	12'Lx12'W	16' deep		
	Collection point for potentially oily	concrete sump					
	runoff from washdown and						
	precipitation, pumped to Refinery						
	treatment system						
	CTG Wash Water Sump	Below ground,	17,240	12'Lx12'W	16' deep		
	Temporary storage of used wash	concrete sump					
	water from periodic offline CTG						
	cleaning, disposed offsite by vacuum						
	truck						

 $\underline{\text{TABLE 5.4-1}}$ Wastewater Flows and Chemical Composition

	Demin Plant Regeneration Water (includes Filter Backwash)	Oily Wastewater
Average Flow (gpm)	47	2
Peak Flow/Duration	250 gpm	120 gpm
	4 hrs/day	30 min/day
General Parameters		
pH (pH units)	6.5-8.5	7.0-7.5
Dissolved Oxygen (mg/L)	8	8
COD	ND	ND
BOD	ND	ND
Oil & Grease (mg/L)	0	10
TDS (mg/L)	6715	100
TSS (mg/L)	8	1
Temperature (°F)	Amb	Amb
Major Cation Conc. (mg/L)		
Ca	202	12
Mg	50	3
Na	1660	3
K	8.4	0.5
Major Anions Conc. (mg/L)		
HCO_3	722	43
CO_3	0	0
Cl	42	3
SO_4	3832	24
Trace Metals Conc. (mg/L)		
Ag	ND	ND
Al	8.79	0.523
As	ND	ND
Ва	0.17	0.01
Be	ND	ND
Cd	ND	ND
Cr	ND	ND
Со	ND	ND
Cu	ND	ND
Fe	6.15	0.366

 $\underline{\text{TABLE 5.4-1}}$ Wastewater Flows and Chemical Composition

	Demin Plant Regeneration Water (includes Filter Backwash)	Oily Wastewater
Hg	ND	ND
Mn	0.15	0.009
Ni	0.02	0.001
Pb	ND	ND
Sb	ND	ND
Se	ND	ND
Sn	ND	ND
Tl	ND	ND
V	0.15	0.009
Zn	0.08	0.005
Other Anions Conc. (mg/L)		
SiO_2	185	11
PO_4	0	0
F	ND	ND
NO ₃ /NO ₂	2.52	0.15
NH ₃ /NH ₄	0	0
Br	ND	ND
Organics Conc. (mg/L)		
Dissolved Organic Carbon	4	0
Polymers (polyquaternary amine)		
Others? (mg/L)		
Total Organic Carbon	9.24	0.55